Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Benzothiazole-2(3H)-selone

Gunay Z. Mammadova, ${ }^{\text {a* }}$ Zhanna V. Matsulevich, ${ }^{\text {b }}$ Vladimir K. Osmanov, ${ }^{\text {b }}$ Alexander V. Borisov ${ }^{\text {b }}$ and Victor N. Khrustalev ${ }^{\text {c }}$

${ }^{\mathbf{a}}$ Baku State University, Z. Khalilov Street 23, Baku AZ-1148, Azerbaijan, ${ }^{\mathbf{b}}$ R. E. Alekseev Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod 603950, Russian Federation, and ${ }^{\text {c }}$ X-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
Correspondence e-mail: gunka479@mail.ru

Received 10 October 2011; accepted 19 October 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.016 ; w R$ factor $=0.041$; data-to-parameter ratio $=23.2$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NSSe}$, is the product of the reaction of 2-chlorobenzothiazole with sodium hydroselenide. The molecule is almost planar (r.m.s. deviation $=0.018 \AA$) owing to the presence of the long chain of conjugated bonds ($\mathrm{Se}=\mathrm{C}-$ $\mathrm{N}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$). The geometrical parameters correspond well to those of the analog N-methylbenzothia-zole-2(3H)-selone, demonstrating that the S atom does not take a significant role in the electron delocalization within the molecule. In the crystal, molecules form centrosymmetric dimers by means of intermolecular $\mathrm{N}-\mathrm{H} \cdots$ Se hydrogen bonds. The dimers have a nonplanar ladder-like structure. Furthermore, the dimers are linked into ribbons propagating in [010] by weak attractive Se . . S [3.7593 (4) Å] interactions.

Related literature

For selones as potential antithyroid drugs, see: Taurog et al. (1994); Roy \& Mugesh (2005, 2006); Roy et al. $(2007,2011)$. For 2,3-dihydro-1,3-benzothiazolo-2-selone synthesis, see: Warner (1963); Shibata \& Mitsunobu (1992). For related compounds, see: Guziec \& Guziec (1994); Husebye et al. (1997); Landry et al. (2006); Nakanishi et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NSSe}$
$V=728.50(6) \AA^{3}$
$M_{r}=214.15$
Monoclinic, $P 2_{1} / n$
$Z=4$
$a=8.0420$ (4) A
$b=6.0818$ (3) \AA
Mo $K \alpha$ radiation
$\mu=5.35 \mathrm{~mm}$
$c=15.1836$ (7) \AA
$T=100 \mathrm{~K}$
$0.30 \times 0.21 \times 0.18 \mathrm{~mm}$
$\beta=101.195$ (1) ${ }^{\circ}$

Data collection

Bruker SMART 1K CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.297, T_{\text {max }}=0.446$
8129 measured reflections 2108 independent reflections 2042 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
91 parameters
$w R\left(F^{2}\right)=0.041$
$S=1.00$
H-atom parameters constrained

2108 reflections
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{Se} 1^{\mathrm{i}}$	0.88	2.56	$3.4165(10)$	163

Symmetry code: (i) $-x+2,-y,-z+1$.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2309).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Guziec, F. S. \& Guziec, L. J. (1994). J. Org. Chem. 59, 4691-4692.
Husebye, S., Lindeman, S. V. \& Rudd, M. D. (1997). Acta Cryst. C53, 809-811.
Landry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. \& Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490-12497.

Nakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. \& Tokitoh, N. (2008). New J. Chem. 32, 1881-1889.
Roy, G., Bhabak, K. P. \& Mugesh, G. (2011). Cryst. Growth Des. 11, 2279-2286.
Roy, G., Das, D. \& Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303-316.
Roy, G. \& Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207-15217.
Roy, G. \& Mugesh, G. (2006). Bioorg. Chem. Appl. 1-9.
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shibata, K. \& Mitsunobu, O. (1992). Bull. Chem. Soc. Jpn, 65, 3163-3173.
Taurog, A., Dorris, M. L., Guziec, L. J. \& Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447-1453.
Warner, J. S. (1963). J. Org. Chem. 28, 1642-1644.

supplementary materials

1,3-Benzothiazole-2(3H)-selone

G. Z. Mammadova, Z. V. Matsulevich, V. K. Osmanov, A. V. Borisov and V. N. Khrustalev

Comment

In the last years, the selone derivatives have attracted considerable attention owing to their antithyroid properties (Taurog et al., 1994; Roy \& Mugesh, 2005, 2006; Roy et al., 2007, 2011) as well as selone-selenol tautomerism (Guziec \& Guziec, 1994; Husebye et al., 1997; Landry et al., 2006).

This article describes the structure of 2,3-dihydro-1,3-benzothiazolo-2-selone, which was obtained by a reaction of 2chlorobenzothiazole with sodium hydroselenide. It should be noted that, before us, the attempt to prepare this compound by the same reaction was unsuccessful (Shibata \& Mitsunobu, 1992). Moreover, the preparation method of the title compound by the reaction of o-aminobenzothiol with CSe_{2} was previously known, but conclusive evidences were not provided (Warner, 1963).

The molecule of $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NSSe}, \mathbf{I}$, is practically planar (r.m.s. deviation $=0.018 \AA$) due to the presence of the long chain of conjugated bonds ($\mathrm{Se} 1=\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}=\mathrm{C} 4-\mathrm{C} 5=\mathrm{C} 6-\mathrm{C} 7=\mathrm{C} 7 \mathrm{~A}$, Fig. 1). The geometrical parameters of I correspond well to those of the closer analog of I-N-methylbenzothiazole-2(3H)-selone (Husebye et al., 1997) demonstrating that the sulfur atom does not take a significant part in the electron delocalization within the molecule.

In the crystal, the molecules of \mathbf{I} form centrosymmetrical dimers by the intermolecular $\mathrm{N} 3-\mathrm{H} 3 \cdots \operatorname{Se} 1^{\mathrm{i}}$ hydrogen bonds (Fig. 2, Table 1). It is interesting to point out that the dimers have non-planar ladder-like structure (Fig. 3). The dimers are further linked into ribbons propagating in $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ by the weak attractive intermolecular $\mathrm{Se} 1 \cdots \mathrm{~S} 1^{\mathrm{ii}}[\mathrm{Se} \cdots \mathrm{S}$ distances are 3.7593 (4) \AA] interactions (Nakanishi et al., 2008) (Fig. 3). Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $x,-1+y, z$.

Experimental

To a suspension of selenium $(1.92 \mathrm{~g}, 24.3 \mathrm{mmol})$ in water $(15 \mathrm{ml})$ was added a solution of $\mathrm{NaBH}_{4}(1.93 \mathrm{~g}, 50.8 \mathrm{mmol})$ in water (15 ml) with stirring at room temperature under argon. After $10 \mathrm{~min}, 2$-chlorobenzothiazole ($2.6 \mathrm{ml}, 20 \mathrm{mmol}$) was added. The mixture was heated 3 h at 353 K and cooled to room temperature. Then to the solution was added $1 M \mathrm{H}_{2} \mathrm{SO}_{4}$ $(20 \mathrm{ml})$ to give yellow precipitate (Figure 4). The crystalline powder was separated by filtration, washed with water and dried on air at 413 K . The solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the selone as pale-yellow prisms. Yield is 73%. M.P. $=346-347 \mathrm{~K} . \operatorname{IR}(\mathrm{KBr}), v\left(\mathrm{~cm}^{-1}\right): 3431,3010,2343,1595,1490,1456,1421,1319,1244,983,750,669 ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}, 303 \mathrm{~K}\right): \delta=7.34(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 6, \mathrm{~J}=7.3$), $7.41(\mathrm{t}, 1 \mathrm{H}, \mathrm{H} 5, \mathrm{~J}=7.3), 7.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 7, \mathrm{~J}=7.3), 7.75(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H} 4, \mathrm{~J}=7.3$), $14.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3)$. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NSSe}: \mathrm{C}, 39.27 ; \mathrm{H}, 2.35 ; \mathrm{N}, 6.54$. Found: C, 39.18; H, 2.30; N, 6.47.

supplementary materials

Refinement

The amino hydrogen atom was localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$. The other hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and refined in the riding model with fixed isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The H atoms are presented as a small cyrcles of arbitrary radius.

Fig. 2. The centrosymmetrical dimers in crystal structure of \mathbf{I}. Dashed lines indicate the intermolecular hydrogen bonds N3-H3 $\cdots \mathrm{Sel}^{1}$. Symmetry code: (i) $-x+2,-y,-z+1$.

Fig. 3. Crystal packing of dimers of I. Dashed lines indicate the intermolecular N-H \cdots Se hydrogen bonding and weak attractive $\mathrm{Se} \cdots \mathrm{S}$ interactions.

Fig. 4. Reaction of 2-chlorobenzothiazole with sodium hydroselenide.

1,3-Benzothiazole-2(3H)-selone

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NSSe}$
$M_{r}=214.15$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=8.0420$ (4) \AA
$b=6.0818$ (3) \AA
$c=15.1836(7) \AA$
$\beta=101.195(1)^{\circ}$
$V=728.50(6) \AA^{3}$
$F(000)=416$
$D_{\mathrm{x}}=1.952 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=346-347 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6338 reflections
$\theta=2.6-30.0^{\circ}$
$\mu=5.35 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, pale-yellow
$Z=4$
$0.30 \times 0.21 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.297, T_{\text {max }}=0.446$
8129 measured reflections
2108 independent reflections
2042 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-11 \rightarrow 11$
$k=-8 \rightarrow 8$
$l=-20 \rightarrow 21$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.041$
$S=1.00$
2108 reflections
91 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.023 P)^{2}+0.371 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.29$ e \AA^{-3}

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma F^{2}$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Se1	$1.277060(14)$	$0.076249(19)$	$0.579287(8)$	$0.01478(5)$
S1	$1.17970(3)$	$0.51668(5)$	$0.661496(19)$	$0.01522(6)$
C2	$1.12217(14)$	$0.27701(18)$	$0.60187(7)$	$0.01301(19)$
N3	$0.95281(12)$	$0.26504(16)$	$0.57732(6)$	$0.01391(18)$
H3	0.9022	0.1543	0.5457	0.017^{*}
C3A	$0.86204(14)$	$0.43853(18)$	$0.60496(8)$	$0.0126(2)$

C4	$0.68634(15)$	$0.4594(2)$	$0.59126(8)$	$0.0155(2)$
H4	0.6135	0.3500	0.5601	0.019^{*}
C5	$0.62189(15)$	$0.6465(2)$	$0.62499(8)$	$0.0170(2)$
H5	0.5026	0.6659	0.6160	0.020^{*}
C6	$0.72815(15)$	$0.8072(2)$	$0.67190(8)$	$0.0167(2)$
H6	0.6801	0.9335	0.6940	0.020^{*}
C7	$0.90347(15)$	$0.7839(2)$	$0.68649(8)$	$0.0160(2)$
H7	0.9762	0.8923	0.7185	0.019^{*}
C7A	$0.96916(14)$	$0.59737(19)$	$0.65275(8)$	$0.0133(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	$0.01251(7)$	$0.01418(7)$	$0.01708(7)$	$0.00142(4)$	$0.00145(4)$	$-0.00172(4)$
S1	$0.01046(12)$	$0.01552(13)$	$0.01887(13)$	$-0.00113(9)$	$0.00088(10)$	$-0.00449(10)$
C2	$0.0133(5)$	$0.0130(5)$	$0.0125(5)$	$0.0000(4)$	$0.0020(4)$	$0.0006(4)$
N3	$0.0125(4)$	$0.0132(4)$	$0.0155(4)$	$-0.0010(3)$	$0.0015(3)$	$-0.0021(3)$
C3A	$0.0121(5)$	$0.0134(5)$	$0.0123(5)$	$-0.0008(4)$	$0.0022(4)$	$0.0001(4)$
C4	$0.0124(5)$	$0.0177(5)$	$0.0158(5)$	$-0.0016(4)$	$0.0013(4)$	$0.0001(4)$
C5	$0.0128(5)$	$0.0219(6)$	$0.0168(5)$	$0.0018(4)$	$0.0040(4)$	$0.0019(4)$
C6	$0.0172(5)$	$0.0179(5)$	$0.0159(5)$	$0.0032(4)$	$0.0052(4)$	$0.0001(4)$
C7	$0.0160(5)$	$0.0163(5)$	$0.0154(5)$	$0.0000(4)$	$0.0024(4)$	$-0.0026(4)$
C7A	$0.0114(5)$	$0.0149(5)$	$0.0134(5)$	$-0.0012(4)$	$0.0021(4)$	$-0.0009(4)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)
$\mathrm{Se} 1-\mathrm{C} 2$
$\mathrm{~S} 1-\mathrm{C} 2$
$\mathrm{~S} 1-\mathrm{C} 7 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{N} 3$
$\mathrm{~N} 3-\mathrm{C} 3 \mathrm{~A}$
$\mathrm{~N} 3-\mathrm{H} 3$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 7 \mathrm{~A}$
$\mathrm{~N} 3-\mathrm{C} 2-\mathrm{S} 1$
$\mathrm{~N} 3-\mathrm{C} 2-\mathrm{Se} 1$
$\mathrm{~S} 1-\mathrm{C} 2-\mathrm{Se} 1$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 3-\mathrm{H} 3$
$\mathrm{~N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$
$\mathrm{~N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 3$
$1.8236(11)$
$1.7308(12)$
$1.7430(12)$
$1.3425(14)$
$1.3933(14)$
0.8800
$1.3935(16)$
$1.3997(15)$
$92.31(5)$
$110.16(8)$
$127.21(9)$
$122.63(6)$
$115.97(10)$
122.0
122.0
$126.82(10)$
$111.91(10)$
$121.25(10)$
$117.37(11)$
121.3
121.3
$0.42(9)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.3890(17)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.3986(17)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 6-\mathrm{C} 7$	$1.3913(16)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9500
C7-C7A	$1.3906(16)$
C7-H7	0.9500
C4-C5-C6	$121.69(11)$
C4-C5-H5	119.2
C6-C5-H5	119.2
C7-C6-C5	$120.67(11)$
C7-C6-H6	119.7
C5-C6-H6	119.7
C7A-C7-C6	$118.04(11)$
C7A-C7-H7	121.0
C6-C7-H7	121.0
C7-C7A-C3A	$120.96(11)$
C7-C7A-S1	$129.39(9)$
C3A-C7A-S1	$109.64(8)$
C5-C6-C7-C7A	$0.29(18)$

sup-4

supplementary materials

$\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1-\mathrm{C} 2-\mathrm{Se} 1$	$-179.05(7)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}$	$-1.00(13)$
$\mathrm{Se} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}$	$178.44(8)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	$-177.14(11)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.19(14)$
$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5$	$179.72(11)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5$	$1.53(17)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.77(18)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.13(18)$

$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$0.46(17)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1$	$-178.39(9)$
$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	$-179.85(10)$
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	$-1.41(17)$
$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1$	$-0.80(12)$
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{S} 1$	$177.64(9)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	$179.17(12)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$0.22(9)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{Sel}^{\mathrm{i}}$	0.88	2.56	$3.4165(10)$	163
Symmetry codes: $(\mathrm{i})-x+2,-y,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

Fig. 3

supplementary materials

Fig. 4

73\%

